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Abstract 

We study multi-item inventory problems that explicitly account for realistic 

transportation cost structures and constraints, including a per-truck capacity and per-truck cost. 

We analyze shipment consolidation and coordination policies under these conditions. A set 

partitioning problem is formulated to determine the best consolidation policy. We first use a 

branch-and-price method to solve the resulting set partitioning problem. Since the pricing 

problem for the general case is NP-hard, two heuristic methods are proposed to generate new 

columns. We also show that the pricing problem can be solved in polynomial time for a practical 

special case. Furthermore, we develop two heuristic methods as alternatives to the branch-and-

price method. Numerical studies are conducted to demonstrate the efficiency of the heuristic 

column generators, heuristic methods to the set partitioning problem, and how the modeling 

approach helps mitigate truck density on transportation networks while resulting in higher truck 

utilization and lower total costs. 
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Executive Summary 

When multiple items share fixed costs and/or resource capacity, independent inventory 

control for the items typically leads to solutions that are far from optimal. For example, when the 

shared resource corresponds to transportation capacity, independent inventory decisions may 

maximize the number of shipments required for delivery (as a result of shipping items 

separately). The supply chain management literature has, therefore, intensely focused on 

integrated inventory and transportation problems and many policies have been proposed to deal 

with such problems. 

This research project examines a multi-item inventory problem that explicitly accounts 

for practical transportation cost structures and constraints, including individual truck capacities 

and shipment costs. That is, we consider truckload transportation costs. In particular, truckload 

transportation cost modeling implies that the additional fixed cost paid for each shipment is a 

step function of the shipment quantity, whereas, less-than-truckload transportation cost modeling 

assumes per unit transportation costs.  In this study, we focus on a multi-item inventory control 

problem. In particular, we consider shipment consolidation opportunity as different items can 

share the same trucks for their shipment requirements. 

The problem we study has similarities with the classical joint replenishment problem, 

although there are also significant differences, as we do not aim to find a basic cycle length 

which specifies shipment frequencies. Instead, our aim is to find a partition of a set of items such 

that each subset in the partition corresponds to a subset of items which are consolidated and 

shipped together. Each subset of consolidated items may therefore have different replenishment 

cycle lengths. We model this problem as a set partitioning problem and propose a column 

generation based solution method as well as two heuristic solution approaches. To the best of our 

knowledge, this model has not been studied in the supply chain literature with the explicit 

consideration of truckload cost structures. This work therefore contributes to literature by 

modeling this problem, studying and revealing its underlying structural properties, and providing 

efficient solution methods. 

The consolidation policy analyzed in this study leads to decreased number of trucks 

required to ship the same amount of commodities, i.e., reduced truck density and increased truck 

capacity utilization. Considering the need for low CO2 emissions in transportation, this study 

ideally is able to propose policies for green transportation in supply chains. Furthermore, these 

policies lead to less truck congestion on the distribution network. 
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1 Background 

When multiple items share fixed costs and/or resource capacity, independent inventory control for the 

items typically leads to solutions that are far from optimal. For example, when the shared resource 

corresponds to transportation capacity, independent inventory decisions may maximize the number of 

shipments required for delivery (as a result of shipping items separately). The supply chain management 

literature has, therefore, intensely focused on integrated inventory and transportation problems, and 

numerous policies have been proposed to deal with such problems (see, e.g., Silver et al., 1998). 

This paper examines a multi-item inventory problem that explicitly accounts for practical 

transportation cost structures and constraints, including individual truck capacities and shipment costs. 

That is, we consider truckload transportation costs, where an additional setup cost is incurred for each 

truck. This results in an order cost component that is a step function of the shipment quantity, whereas 

less-than-truckload (LTL) transportation cost modeling often assumes only per unit transportation costs. 

As Toptal and Ç etinkaya (2006) show for a single-item case, explicit consideration of truck transportation 

cost structures often results in using fewer total shipments for transportation. We note that similar cost 

structures have been considered in the literature for different types of single-item inventory control 

problems to model truckload transportation costs (see, e.g., Aucamp, 1982, Lee, 1986, Hwang et al., 

1990, Ç etinkaya and Lee, 2002, Lee et al., 2003, Toptal et al., 2003, Zhao et al., 2004, Toptal and 

Ç etinkaya, 2006, Mendoza and Ventura, 2008, Toptal, 2009, Zhang et al., 2009). In this study, we 

focus on a multi-item inventory control problem. In particular, we consider shipment consolidation 

opportunities across items, as different items can share trucks for their shipment requirements. 

The majority of past studies on shipment consolidation considers stochastic demand environments. 

In particular, these studies seek to determine a time-, quantity-, or time-and-quantity-based 

consolidation policy for customers with stochastic arrivals of shipping requirements. In a time-based 

policy, the question of interest is when to ship customer demands that accumulate over time, whereas 

a quantity-based policy specifies how much to accumulate before dispatching a truck (for examples of 

modeling studies focusing on time- and quantity-based consolidation policies, see, e.g., Higgison, 1995, 

Higgison and Bookbinder, 1995, Ç etinkaya and Lee, 2000, Ç etinkaya and Bookbinder, 2003). A time-

and-quantity policy defines the time to release a truck, unless a specified quantity is accumulated before 

that time (see, e.g., Bookbinder and Higgison, 2002, Ching and Tai, 2005, Ç etinkaya et al., 2006, Mutlu 

et al., 2010). Higgison and Bookbinder (1994) compare these three policy approaches using simulation, 

and Chen et al. (2005) compare time- and quantity-based policies under Vendor-Managed-Inventory. 

We refer the reader to Ç etinkaya (2005) for a detailed discussion of integrated inventory control and 
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transportation studies with multi-item consolidation. 

In contrast, we analyze freight consolidation with explicit transportation costs in a multi-

item Economic-Order-Quantity (EOQ) model, i.e., we consider deterministic demand. The joint 

replenishment problem considers multi-item inventory systems with deterministic demand, where each 

shipment involves a (major) setup cost and each item has an individual (minor) setup cost if it is included 

in a shipment. Goyal (1974, 1975), Goyal (1974, 1975), Silver (1975, 1976), Jackson et al. (1985), 

Viswanathan (1996, 2002), Wildeman et al. (1997), and Moon et al. (2010) study joint replenishment 

problems and their solution methods. Due to the problem’s complexity, heuristic methods are commonly 

used for solving the resulting models. One may refer to Khouja and Goyal (2008) for a review of 

various joint replenishment problems studied in the literature. A common solution approach for joint 

replenishment problems is to determine a base cycle length along with an integer multiple for each 

item. This integer multiple denotes how frequently the item is replenished (for instance, a multiple of 

one may indicate that the inventory is replenished every week, while a multiple of three corresponds to 

replenishment every three weeks). Since the groups of items that share truck capacity are an indirect 

byproduct of the solution strategy, this approach is referred to as indirect grouping strategy (Khouja 

and Goyal, 2008). In a direct grouping strategy, on the other hand, the groups of items that will be 

jointly shipped are directly determined. In this paper, we adopt a direct grouping strategy for the 

problem of interest. That is, we do not restrict individual items to be replenished at integer multiples 

of a base cycle length. Instead, our aim is to find a partition of a set of items such that each subset in 

the partition corresponds to a subset of items which are consolidated and are always shipped together. 

Each subset of consolidated items may therefore have different replenishment cycle lengths. 

Ç etinkaya and Lee (2002) determine an inventory replenishment cycle length for the supply to a 

warehouse of a single item with deterministic demand, as well as an integer number of consolidation 

cycles within a replenishment cycle, where a consolidation cycle represents the time between consecutive 

shipment releases made to the market from the warehouse. As noted by Ç etinkaya and Lee (2002), time-

and quantity-based consolidation policies are identical in the case of deterministic demand. Moon et al. 

(2010) extend the consolidation problem of Ç etinkaya and Lee (2002) to a multi-item inventory system. 

They determine a base cycle length, an integer value that specifies each individual item’s inventory 

replenishment cycle length, and the number of consolidation cycles for each item within each of its 

replenishment cycles. However, while Ç etinkaya and Lee (2002) model explicit transportation costs, 

which implies the setup cost paid for each replenishment is a nonlinear function of the replenishment 

quantity, Moon et al. (2010) consider fixed major and minor setup costs, which are constants, as in the 

joint replenishment problem. 
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The problem we study has similarities with the classical joint replenishment problem, although there 

are also significant differences. Unlike traditional joint replenishment problems, our model explicitly 

considers truck capacities and per-shipment fixed costs (rather than a simple shared fixed cost for each 

order). Similar to Ben-Khedher and Yano (1994), Levi et al. (2008), and Kang and Kim (2010), the 

number of trucks used to deliver a consolidated shipment is a decision variable (this generalization is 

sometimes referred to as the case with soft capacities, see, e.g., Levi et al., 2008). Ben-Khedher and 

Yano (1994), Levi et al. (2008), and Kang and Kim (2010) focus on a joint replenishment problem in 

a finite planning horizon such that each planning horizon has finite number of periods and each period 

constitutes the base cycle length. In our model, since no such base cycle length is defined, our solution 

methods differ from the solution methods proposed for joint replenishment problems. In particular, we 

model the problem of interest as a set partitioning problem and propose a column generation based 

solution method as well as two heuristic solution approaches. Sindhuchao et al. (2005) model a set 

partitioning problem and develop column generation based solution method for an inventory routing 

problem with limited truck capacity. While they adopt a direct grouping strategy as we do, they assume 

that each subset of consolidated items is shipped by a single truck. On the other hand, our model defines 

the number of trucks used for each dispatch of a consolidated group of items as a decision variable. To 

the best of our knowledge, this model has not been studied in the supply chain literature with the 

explicit consideration of truckload cost structures. This work therefore contributes to the literature 

by modeling this problem, studying and revealing its underlying structural properties, and providing 

efficient solution methods. 

It is well known that set partitioning problems are NP-complete (Garey and Johnson, 1979). 

Hence, it is not an uncommon practice in the literature to use column generation methods to solve set 

partitioning problems. Branch-and-price methods use column generation within a branch-and-bound 

scheme for solving integer (or mixed integer) programs with a large number of columns. One may refer to 

Barnhart et al. (1998) and Lübbecke and Desrosiers (2005) for examples of the use of column generation 

methods for the exact solution of integer programs, while Wilhelm (2001) provides a technical review of 

column generation in integer programming. Branch-and-price has also been employed for solving multi-

item or multi-period inventory control problems with integer decision variables (see, e.g., Dı́az and 

Fernández, 2002, Shen et al., 2003, Freling et al., 2003, Lulli and Sen, 2004, Degraeve and Jans, 2007). 

In applying the branch-and-price method to our model, we observe that the pricing problem, which 

is used to generate columns, is NP-hard; therefore, we propose two heuristic methods for generating 

attractive columns for the general case and use one of them (the one which can generate better columns, 

on average, with similar computational times, based on our computational experience) as a heuristic 
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column generator within the branch-and-price method. Using a heuristic for generating columns tends 

to reduce the average time required to generate an attractive column. However, when such a heuristic is 

unable to find an attractive column, exact solution of the underlying set partitioning problem requires 

solving the pricing problem exactly. As a heuristic method, however, we might choose not to solve the 

pricing problem exactly. Although this approach can lead to invalid bounds for the original problem 

in the branch-and-bound tree, it often enables finding quick feasible solutions, as we later show in our 

numerical study section. Therefore, we consider the application of the branch-and-price method as both 

an exact method and as a heuristic method, where the latter corresponds to cases in which we do not 

solve the pricing problems to optimality at each node in the branch-and-bound tree. In addition, for a 

practical case, we show that the pricing problem can be solved in polynomial time. It is worth noting 

that this special case generalizes the EOQ model with market choice flexibility defined and analyzed in 

Geunes et al. (2004) by modeling explicit truckload transportation costs. 

This work serves as an important decision tool for the following practical supply chain scenarios. 

1. Single-Retailer, Multi-item Systems: In this setting, a single retailer who sells multiple items 

needs to control each item’s inventory. Each item obeys the assumptions of the EOQ model, and 

the retailer is responsible for the transportation cost of any order. The transportation cost is 

determined by the number of trucks used to ship inbound orders to the retailer. In this case, 

the retailer may achieve substantial savings in transportation costs by consolidating the orders 

for different items, which requires common replenishment cycle lengths for consolidated items. 

On the other hand, a common replenishment cycle length may increase inventory-related costs, 

including holding and order setup costs, for consolidated items. The problem is to determine which 

subsets of items should be consolidated, as well as the common cycle length specific to each set of 

consolidated items. 

2. Single-Distributor, Multi-Retailer Systems: In this setting, multiple retailers order a product from a 

common distributor. Assuming Vendor-Managed-Inventory, the distributor controls the inventory 

at the retailer locations and pays for the transportation cost of any shipment. The distributor can 

increase truck utilization by consolidating retailer shipments. Similar to the previous scenario, a 

tradeoff exists between reduced truck costs and increased inventory-related costs. The distributor’s 

problem is to determine which retailers should be consolidated, as well as the common delivery 

cycle length for each subset of consolidated retailers. 

3. Multi-Supplier, Multi-Retailer Systems: In this setting, a set of retailers is owned by a single firm, 

as in a retail chain. Each retailer requires shipments from a set of suppliers. The chain store’s 
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problem is to determine which suppliers’ shipments to which retailers should be consolidated, as 

well as a common delivery cycle for each subset of consolidated product and retailer shipments. 

Scenario 3 above corresponds to a problem the authors observed in a distribution channel that 

motivated this study. In particular, an air-conditioning company in Florida operates as follows. The 

company has a set of retailers throughout the region, and these retailers place orders for products from 

multiple suppliers via the company’s distribution department. Currently, the distribution department 

simply passes orders to suppliers who then ship to individual retailers, i.e., orders are decentralized 

and are not coordinated. However, the company observed high transportation costs due to under-

utilized trucks and wished to consider consolidation approaches to increase truck utilization and reduce 

transportation costs. Our modeling approach will assume that in Scenario 1, the different items come 

from a common supplier or distributor. In Scenario 2, our modeling approach would assume that the 

multiple retailers are co-located in an area that is far from the distributor location, so that any local 

drop-off (routing) costs are extremely small in comparison to the long-haul truckload shipping cost from 

the distributor’s location to the retailers’ local area. As a result, we can use a single model to analyze 

either of the first two scenarios, as each requires managing a number of consolidated shipments that are 

effectively between two locations (or two regions). The third scenario can be reduced to the first (or 

second) scenario by decomposing the problem by each origin-destination pair. That is, we consider the 

problem of consolidating shipments of multiple products from a given supplier to each retail area. Thus, 

for ease of exposition in defining and formulating our model, it is sufficient for us to use Scenario 1 as a 

basis for this description. 

The rest of this paper is organized as follows. In Section 2, we formulate the multi-item EOQ model 

with shipment consolidation and explicit truckload transportation costs as a set partitioning problem. 

Furthermore, for two subproblems (involving a single-item and a given subset of consolidated items), we 

discuss how to determine the shipment policy. Section 2.1 explains the details of the branch-and-price 

method applied to the set partitioning problem and discusses two heuristic methods for the model of 

interest in this paper. A set of numerical studies is conducted in Section 3 to analyze the efficiency 

of the heuristic column generation techniques proposed for the branch-and-price method, the efficiency 

of the heuristic approaches to the set partitioning problem, and the costs and benefits of the proposed 

modeling approach. Concluding remarks, a summary of the contributions, and a set of future research 

directions are given in Section 4. 
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2 Research Approach 

Consider a set S containing n items, i.e., |S| = n, where |S| denotes the cardinality of S. We assume 

that a single supply chain agent controls the distribution of these items. Each item may be used to 

represent a collection of different product types replenished from individual suppliers to the agent. We 

assume that each item obeys the basic Economic Order Quantity (EOQ) model assumptions. That 

is, (i) the demand rate for each item is assumed to be known and constant, (ii) there is a constant 

lead time associated with an order of any item, (iii) shortages are not allowed, and (iv) the planning 

horizon is infinite. Assumption (iv) indicates that the chosen replenishment policy will be applied over 

the foreseeable future, which can be assumed to be infinity. Under the basic EOQ model assumptions, 

the relevant costs associated with any given item are defined as follows. A fixed cost is incurred when 

placing an order for an item. Let ai denote the fixed order cost associated with item i, i = 1, 2, . . . , n. 

An inventory holding cost is incurred for each item; let hi denote the per unit volume per unit time 

inventory holding cost for item i, i = 1, 2, . . . , n. Furthermore, let ci denote the per unit volume purchase 

cost of item i. 

Now, suppose that the agent controls each item independently, and s/he wishes to determine the 

optimal order volume for an item, which also specifies the time between orders for the item. That is, 

let vi and ti denote the order volume and the replenishment cycle length of item i, respectively. Then 

vi = λiti, where λi denotes the demand rate (in volume per unit time) for item i. It is well known that 

the total cost per unit time associated with item i amounts to 

hivi aiλi
fi(vi) = + . (1)

2 vi 

The first term in Equation (1) is the average holding cost per unit time and and the second term is the 

∗average order cost per unit time associated with item i. It can be easily shown that fi(vi) is convex in vi √ 
and, hence, the agent controlling item i will achieve the minimum cost by replenishing veoq = 2aiλi/hii 

units with any order of item i. 

Equation (1) does not explicitly account for the structure of transportation costs encountered in 

many applications.† Similar to studies by Aucamp (1982), Lee (1986), Hwang et al. (1990), Ç etinkaya 

and Lee (2002), Lee et al. (2003), Toptal et al. (2003), Zhao et al. (2004), Toptal and Ç etinkaya 

(2006), Mendoza and Ventura (2008), Toptal (2009), and Zhang et al. (2009), we next consider a 

generalization of the basic EOQ model that explicitly considers transportation costs using a truck-load 

∗ The purchase cost for item i is not considered in Equation (1) as purchase cost per unit time, ciλi, is constant for any 
item i. 

†Except for cases in which item i is the only item, vi
eoq does not exceed truckload capacity, ai accounts for the fixed 

truckload transportation cost, and ci for the variable transportation cost. 
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(TL) transportation cost approach. 

Let R denote the cost of a truck shipment and let P denote the per truck capacity. Then, the total 

transportation cost associated with an order of item i is equal to ⌈vi/P ⌉ R. The total cost per unit time, 

including explicit transportation costs for item i, reads as ⌈hivi aiλi vi 
⌉ λiR 

gi(vi) = + + . (2)
2 vi P vi 

Note that the only difference between Equations (1) and (2) is the transportation cost per unit time, 

accounted for in the last term of Equation (2). Modeling transportation costs under the TL approach 

introduces discontinuities and results in a non-convex cost function. Therefore, one cannot directly use 

first-order optimality conditions to determine the optimal shipping volume for item i. A detailed analysis 

of gi(vi) shows that a procedure can be developed to find the value of vi, say v(i), that minimizes gi(vi). 

In particular, note that gi(vi) has a piecewise continuous structure, where each piece is an EOQ-type √(k)
of cost function. Let ṽi = 2(ai + kR)λi/hi, for some nonnegative integer k. Furthermore, let ℓ be 

the unique integer such that ℓP < veoq ≤ (ℓ + 1)P . The following properties of gi(vi) are given without i 

proof. One may refer to Lee (1986) and Toptal et al. (2003) for a deeper discussion on minimizing gi(vi). 

Property 1 gi(vi) satisfies the following properties: 

• gi(vi) is decreasing over (k − 1)P < vi ≤ kP , ∀k ≤ ℓ. 

• gi(kP ) ≤ gi(vi) for vi ≥ kP if k ≥ ℓ + 1. 

(ℓ+1) eoq (ℓ+1)• If ṽ ≥ (ℓ + 1)P , then gi(vi) is decreasing over ℓP < v ≤ (ℓ + 1)P . If ṽ < (ℓ + 1)P ,i i i 

(ℓ+1) (ℓ+1) eoqthen gi(vi) is decreasing over ℓP < veoq ≤ ṽ and increasing over ṽ < v ≤ (ℓ + 1)P .i i i i 

Based on Property 1, the minimizer of gi(vi) is defined as follows 

(ℓ+1)
v(i) = arg min{gi(min{ṽ , (ℓ + 1)P }), gi(ℓP )}. (3)i 

Then we have t(i) = v(i)/λi.i 

When the supply chain agent controls each item separately, s/he should minimize gi(vi) for each 

item i, i = 1, 2, . . . , n. However, as noted previously, independent control of different items is suboptimal 

and tends to maximize the number of trucks required for delivery. The model we define next aims at 

finding the best partition of the set of items, such that each subset of the partition contains items that 

will be consolidated on common shipments. In particular, let J denote the set of all possible subsets 

of S, indexed by j, and let Sj denote a particular subset of S, for each j ∈ J . Suppose that all item 

orders for items in Sj are consolidated on common shipments. In this case, the agent’s decision variable 
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for the items in Sj corresponds to the length of a single replenishment cycle, which will be common 

for all items in Sj . Let Tj denote the common replenishment cycle length when all of the item orders 

in Sj are consolidated. If we define Vj as the aggregate replenishment volume of the items in Sj , then ∑ ∑ ∑ ∑ ∑ 
Vj = Tj λi. Furthermore, let Λj = λi, Aj = ai, and Hj = ( hiλi)/( λi).i∈Sj i∈Sj i∈Sj i∈Sj i∈Sj 

Note that Λj defines the total demand volume per unit time of the items in Sj , Aj defines the total 

fixed order cost for consolidating these items, and Hj defines the weighted average holding cost per unit 

volume per unit time for the consolidated items in Sj . Then the total cost per unit time associated with 

the items in Sj reads ⌈ ⌉ 
Hj Vj Aj Λj Vj RΛj

Gj (Vj ) = + + . (4)
2 Vj P Vj 

The first term in Equation (4) is the total holding cost per unit time, the second term is the total 

order cost per unit time, and the last term is the total transportation cost per unit for the items in 

Sj . We note that Gj (Vj ), defined in Equation (4), has the same structure as gi(vi), defined in Equation 

(2). Therefore, one can easily show that Property 1 also holds for Gj (Vj ). In particular, let Vj
eoq = √ 

2Aj Λj /Hj , and define  j to be the unique integer such that  j P < V j
eoq ≤ ( j + 1)P . Furthermore, √(k)

let Ṽj = 2(Aj + kR)Λj /Hj for some nonnegative integer k. Then Vj 
∗, i.e., the minimizer of Gj (Vj ) 

for Vj ≥ 0, can be written as 

( j +1)V ∗ = arg min{Gj (min{Ṽ , ( j + 1)P }), Gj ( j P )}. (5)j j 

Therefore, we have Tj 
∗ = Vj 

∗/Λj . 

Once a partition of the items is determined, the supply chain agent needs to minimize Gj (Vj ) for 

each subset Sj included in the partition.‡ However, given n items, there are 2n − 1 possible subsets 

of items, and the agent’s problem is to choose a partition, i.e., a set of subsets such that each item is 

contained in exactly one subset. Furthermore, we seek the partition that will minimize the agent’s total 

cost per unit time. Then Gj (Vj 
∗) corresponds to the cost per unit time when the supply chain agent 

chooses subset Sj in his/her partition. 

The agent’s set partitioning problem can be formulated as follows. Let { 
1 if item i is in subset Sj , 

xij = 
0 otherwise. 

Note that the xij values are defined by the the subsets Sj , i.e., xij = 1 ∀i ∈ Sj . Furthermore, let { 
1 if subset Sj is in the selected partition, 

yj = 
0 otherwise. 

‡As total purchase cost per unit time will be the same constant for any partition, purchase costs can be ignored in 
formulation of the set partitioning problem. Note that Gj (Vj ) does not include purchase costs per unit time, therefore, the 
set partitioning problem also does not consider purchase costs. 
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The yj variables determine the selection of item subsets, i.e., yj = 1 implies that subset Sj is selected. 

Then, the agent’s set partitioning problem is: ∑ 
(P) : min Gj (V ∗ 

j )yj 
j∈J∑ 

s.t. xij yj = 1, i ∈ S, 
j∈J 

yj ∈ {0, 1}, j ∈ J. 

The goal is to choose a partition that minimizes the total cost associated with item replenishments and 

shipments. The first set of constraints assures that each item is included in one consolidated shipment, 

i.e., only one of the selected subsets can contain each item. A summary of the notation used is given in 

Appendix 5.1. Additional notation will be defined as needed. In Section 2.1, we focus on methods to 

solve problem P. 

2.1 Analysis of the Problem 

As noted previously, problem P, defined in Section 2, is a set partitioning problem. We note that set 

partitioning problems have been shown to be NP-complete (Garey and Johnson, 1979). More specifically, 

given n products, problem P has 2n − 1 decision variables. Hence, it is not an uncommon practice in the 

literature to use column generation methods to solve set partitioning problems, as the set partitioning 

formulation often has a small integrality gap. In this section, we next discuss a column generation based 

method called branch-and-price to solve problem P. We then discuss two heuristic methods for solving 

this problem. 

2.1.1 Branch-and-Price Algorithm 

Column generation methods are often used when a problem of interest has a number of variables too 

large to enumerate explicitly. Branch-and-price methods use column generation within a branch-and-

bound scheme for solving integer programs with a large number of columns. Barnhart et al. (1998) 

and Lübbecke and Desrosiers (2005) provide detailed discussions on classes of problems suitable for 

column generation. In a branch-and-price scheme, the linear relaxation problem (LRP) at a node of 

the branch-and-bound search tree is optimized using column generation. First, a restricted LRP is 

considered, where only a subset of the columns is considered. This restricted LRP is also called the 

restricted master problem (RMP). Then, a pricing problem is used to potentially generate new columns 

with attractive reduced cost values. If no new columns can be generated, this implies that the solution 

to the RMP is an optimal solution for the LRP. When this solution is fractional, the branching process 

is applied and the relaxed problems at new nodes are again solved using the column generation method. 

Next, we discuss a branch-and-price method for problem P. 
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Recall that problem P is a set partitioning problem. The LP relaxation of problem P is ∑ 
(LRP) : min gj yj 

j∈J∑ 
s.t. xij yj = 1, i ∈ S, 

j∈J 

0 ≤ yj ≤ 1, j ∈ J, 

′ ′ where we use gj = G(Vj 
∗) for notational simplicity. Now, suppose that only a subset, J (J ⊂ J), of the 

decision variables, i.e., columns (where each column is a vector representation of a subset of products) 

is considered. Then the RMP is written as ∑ 
(RMP) : min gj yj ∑ ′ j∈J 

s.t. xij yj = 1, i ∈ S, 
′ j∈J 

′ 0 ≤ yj ≤ 1, j ∈ J . ∑ 
Let πi be the dual variable associated with the constraint ′ xij yj = 1. (Note that the dual variables j∈J 

′ associated with the constraints yj ≤ 1 ∀j ∈ J are ignored as they will be equal to zero in the optimal 

dual solution. Also, one can equivalently state RMP without these constraints.) The solution of RMP 

is optimal for LRP if there is no column with a negative reduced cost. To determine whether a column 

exists with a negative reduced cost, the following pricing problem is used: ∑ 
(PP0) : minj∈{J\J ′ } gj − xij πi. 

i∈S ∑ 
Note that gj − i∈S xij πi gives the reduced cost for the variable yj . Therefore, the solution of PP0 

will determine the column with the minimum reduced cost. If the optimal objective value of PP0 is 

non-negative, then this implies that the solution of RMP is optimal for LRP and column generation at 

the node terminates. Otherwise, a new column is added to RMP and a new problem of the form PP0 

is solved using the dual solution of the new RMP. This process continues until no column is found with 

a negative reduced cost. Next, we reformulate the pricing subproblem. 

′ First, we note that the pricing subproblem can be optimized over J instead of J\J (because the 

′ reduced cost of any column in J is nonnegative). Then the pricing subproblem is used to find the column 

with the minimum reduced cost over all possible feasible columns. Recall that a column corresponds to 

a vector representation of a subset of items. That is, the pricing subproblem seeks the subset of items 

with the minimum reduced cost. Let { 
1 if item i is in the subset, 

xi = 
0 otherwise, 

and let x denote the n-vector of xi values. Then the pricing subproblem can be reformulated as follows: 
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∑ 
(PP1) : min G(x) − xiπi 

i∈S 
s.t. xi ∈ {0, 1}, i ∈ S, 

where G(x) is the total cost per unit time associated with x. Considering Equation (4), PP1 can be 

rewritten as ∑ 
V hiλixi ∑ ∑ ∑ ∑

i∈S 1 R  
(PP2) : min − πixi + ∑ + aixi λixi + λixi

V V2 λixii∈S i∈S i∈S i∈S 
i∈S 

s.t. (  − 1)P < V ≤  P, 
xi ∈ {0, 1}, i ∈ S, 
  ∈ {1, 2, 3, . . .}. 

The decision variable   denotes the number of trucks used for each shipment of items in the subset, i.e., 

the objective function computes the cost of using   trucks (this is why the lower bounding constraint 

for V uses a strict inequality). Note that PP2 is a Mixed Integer Nonlinear Programming (MINLP) 

∗problem and let us define x , V ∗ , and  ∗ to be an optimal solution of PP2. We next discuss an 

important property of PP2. 

Property 2 Let (x0, V 0) be a solution to the following problem: ∑ 
V hiλixi ∑ ∑ ∑ ∑

i∈S 1 R 
(R-PP2) : min − πixi + ∑ + aixi λixi + λixi

V P2 λixii∈S i∈S i∈S i∈S 
i∈S 

s.t. V ≥ 0, 
xi ∈ {0, 1}, i ∈ S. 

Define  0 = ⌊V 0/P ⌋. Then  0 ≤  ∗ ≤  0 + 1. 

Proof: The proof is given in Appendix 5.2. 

It follows from Property 2 that if we know the value V0, then we can solve PP2 by solving the problem 

PP2-k, defined below, for k =  0 and k =  0 + 1. ∑ 
V hiλixi ∑ ∑ ∑ ∑

i∈S 1 Rk 
(PP2-k) : min − πixi + ∑ + aixi λixi + λixi

V V2 λixii∈S i∈S i∈S i∈S 
i∈S 

s.t. (k − 1)P < V ≤ kP, 
xi ∈ {0, 1}, i ∈ S. 

Note that PP2-k is a generalization of the Unconstrained Binary Quadratic Optimization Problem, 

which is known to be NP-hard (Palubeckis, 2004)§. This then implies that PP2 is NP-hard. Therefore, 

we focus on heuristic methods to solve the pricing subproblem. However, in what follows, we consider 

§For a given V , when hi = h, ∀i ∈ S, PP2-k is the unconstrained binary quadratic optimization problem. 
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a special case of PP2, for which we propose an exact solution method that runs in polynomial time. 

Prior to the analysis of this special case, we next note another property of PP2-k, which we utilize in 

the solution of the special case. In particular, let (xk, V k) be a solution of PP2-k. Note that for any 

given x, the objective function of PP2-k is convex in V and, hence, in the optimal solution of PP2-k, 

we have  
lim V if Ṽ (k)(xk) ≤ (k − 1)P , V ↓(k−1)P 

V k =  Ṽ
(k)(xk) if (k − 1)P < Ṽ (k)(xk) ≤ kP , 

kP if Ṽ (k)(xk) > kP , √ ∑ (∑ )/∑
k k kwhere Ṽ (k)(xk) = λix 2 + kR hiλixi∈S i i∈S aixi i∈S i . 

Property 3 For k =  0 and k =  0 + 1, if Ṽ (k)(xk) = lim V in any solution of PP2-k, then it 
V ↓(k−1)P 

is not a solution of PP2. 

Proof: The proof is given in Appendix 5.3. 

Property 3 implies that we do not need to consider the cases when V k converges to the lower bound of 

PP2-k for k =  0 and k =  0 + 1 in the solution of PP2. 

2.1.2 A Special Case: Identical holding costs and a fixed order cost value 

We now discuss how to solve the pricing problem when (i) all items in a set S have the same holding 

cost per unit volume per unit time (or when the average holding cost per item serves as a sufficiently 

accurate approximation that can be applied to all items) and (ii) a single fixed order cost is charged 

for any consolidated set instead of for each item. This special case most closely corresponds to the 

second scenario mentioned in Section 1, i.e., when a distributor controls the ordering decisions for a set 

of retailers who receive the same product. Under this scenario, while the retailers may have different 

demand rates, the holding cost is roughly identical for each retailer, as each holds the same product. 

Furthermore, since the distributor controls ordering decisions, consolidating orders may lead to a single ∑ 
order cost for the distributor. Thus, it is reasonable to assume hi = h ∀i ∈ S and i∈S aixi = a. Under 

these assumptions, problem R-PP2, defined in Property 2, reduces to √∑ ∑ 
(R-PP2SC ) min bciλixi + 2ah λixi 

i∈S i∈S 

s.t. xi ∈ {0, 1}, i ∈ S, 

where bci = R/P − πi/λi. R-PP2SC can be solved in polynomial time (see Shen et al., 2003, Geunes 

et al., 2004). In particular, one first sorts items in increasing order of bci values. Then, if an optimal 

solution has ℓ items consolidated, these items will be the ones with ℓ smallest bci values. Therefore, one 
can determine  0 in polynomial time, and then solve PP2-k with k =  0 and k =  0 + 1. 
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For the special case of interest, PP2-k reduces to ∑ hV ∑Rk + a 
(PP2-kSC ) : min − πixi + 

2 
+ 

V 
λixi 

i∈S i∈S 
s.t. (k − 1)P < V ≤ kP, 

xi ∈ {0, 1}, i ∈ S. 

Note that for any feasible V , one can determine the corresponding x that minimizes the objective function 

value of PP2-kSC for the given V by assigning xi = 1 when ci(V ) = ((Rk + a)/V − πi/λi)λi < 0 and 

xi = 0 otherwise (when ci(V ) > 0 ∀i ∈ S, we then set xj = 1 for j = arg min{ci(V ) : i ∈ S} and 

xi = 0 ∀i ∈ S\{j}, as we do not consider the empty set, i.e., x = 0, as a feasible consolidation). √ ∑ 
kFurthermore, we know from Property 3 that V k is equal to either kP or 2(a + kR) λixi /h. We i∈S 

can thus provide a polynomial-time solution method for PP2-kSC , formally stated as follows. 

Property 4 Algorithm 1, stated below, solves PP2-kSC for k =  0 and k =  0 + 1. 

Algorithm 1 

1. Let V (k) = kP . Index items in nondecreasing order of ci(V (k)) = ((Rk + a)/V (k) − πi/λi)λi. If 
(k) (k)

c1(V (k)) > 0, define x(k) by assigning x = 1 and x = 0 ∀i ∈ S\{1}. Else, define x(k) by1 i 

(k) (k)
assigning xi = 1 if ci(V (k)) < 0, x = 0 otherwise. Let z(k) equal the objective function value i 

k (k) k (k)of PP2-kSC at (x(k), V (k)). Set x = x , V k = V (k), and z = z . Go to Step 2. √ ∑ ( ]
2. Let V (k) = 2(a + kR) λix

(k)
/h. If V (k) ∈ (k−1)P, kP , let z(k) equal the objective function i∈S i 

(k) k (k), V k k (k)value of PP2-kSC at (x(k), V (k)) and if z < zk, set x = x = V (k), and z = z . Go to 

Step 3. 

(k)3. If c1(V (k)) > 0, go to Step 4. Else, let j be the largest index such that x(k) = 1. Then redefine xj 

(k)
by assigning x = 0 while keeping other components unchanged and go to Step 2. j 

4. Return xk and V k . 

Proof: The proof is given in Appendix 5.4. 

Note that the sorting in Step 1 of Algorithm 1 is the dominant process in the algorithm; hence, Algorithm 

1 can solve PP2-kSC in O(n log n) time for k =  0 and k =  0 +1. Furthermore,  0 can be determined 

in O(n log n) time by solving R-PP2SC (Geunes et al., 2004). Therefore, the pricing problem for this 

special case can be solved in O(n log n) time. In what follows, we discuss a sorting based heuristic 

method, similar to Algorithm 1, along with another iterative heuristic method for the pricing problem 

in the general case. 
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2.1.3 Heuristic Approaches to the General Pricing Problem 

As mentioned above, the pricing problem is NP-hard in the general case. Nevertheless, one does not 

necessarily need to solve the pricing problem optimally to generate a column with negative reduced cost. 

Heuristic methods have been commonly employed as column generators for complex pricing problems 

(see, e.g., Archetti et al., 2011, Min et al., 2011, Salani and Vacca, 2011). Therefore, in what follows, 

we discuss two heuristic methods for column generation. 

The first heuristic is based on a sorting scheme similar to that in Algorithm 1. Suppose that the 

optimal dual values are given at a specific node, i.e., πi ∀i ∈ I are known. The heuristic method first 

starts with a column representing a solution in which all of the items are consolidated together. For this 

consolidation, the optimal shipment policy is determined using Equation (5), i.e., the order volume for 

each item and the common replenishment cycle length are determined. Therefore, one determines the 

negative reduced cost associated with this column, i.e., objective function value of PP2 when n items 

are consolidated. The heuristic method then moves to another column, which represents a consolidation 

with n − 1 items. In moving from the n-item consolidation to an (n − 1)-item consolidation, one item 

is excluded based on a heuristic sorting approach. In particular, each item i in the n-item consolidation 

is assigned a weight, wi, which is intended to measure item i’s contribution to the reduced cost in the 

n-item consolidation. Then, the consolidation with n − 1 items is defined by excluding the item with 

the maximum weight from the n-item consolidation. The item with the maximum weight is excluded 

because we would ideally like to find a consolidation with minimum reduced cost. Then the reduced 

cost of the (n − 1)-item consolidation is determined, weights for each of the n − 1 items are calculated, 

and an (n − 2)-item consolidation is generated by excluding the item with the maximum weight from 

the (n − 1)-item consolidation. 

The weight of item i in a k-item consolidation is defined as wi = −πi + hiλiT/2+ ai/T + R /(kT ), ∑ nwhere T and   are given by Equation (5). One can note that gives the objective function i=1 wixi 

value of PP2 for the given k-item consolidation. The heuristic method, which we refer to as Sorting-

based-exclusion heuristic method (SE-H), calculates the reduced cost for each k-item consolidation for 

k = n, n − 1, . . . , 1 and returns the consolidation with the minimum reduced cost. Appendix 5.5 gives 

the formal statement of SE-H. 

The second heuristic method for solving the pricing problem proceeds in a similar way to SE-H. 

It starts with an n-item consolidation and excludes one item to generate an (n − 1)-item consolidation. 

However, in an intermediate iteration, instead of using weights for moving from a k-item consolidation 

to a (k − 1)-item consolidation, it checks all possibilities for excluding an item. In particular, a total 
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of k different (k − 1)-item combinations are generated from the given k-item consolidation. Each of 

these (k − 1)-item combinations corresponds to the exclusion of one of the k items from the given k-item 

consolidation. Then, the (k − 1)-item combination with the minimum reduced cost is selected and used 

to generate the (k − 2)-item consolidation. Similar to SE-H, the heuristic method, which we refer to 

as Best-exclusion heuristic method (BE-H), finds the reduced cost for each k-item consolidation for 

k = n, n − 1, . . . , 1 and returns the consolidation with the minimum reduced cost. Appendix 5.6 gives 

the formal statement of BE-H. 

Both of these heuristics run in O(n2) time. In our numerical studies, we compare the solutions 

achieved by the heuristics with the optimal solution for numerous small-size problem instances achieved 

through total enumeration. For larger size problem instances, we compare the heuristic methods with 

BARON, a commercial solver for MINLP problems. Our numerical analyses indicate that the heuristic 

methods are quite efficient in terms of both solution time and solution quality. Therefore, we expect 

that when these are embedded within the branch-and-price scheme, they will be successful as column 

generators. Next, we discuss two heuristic methods for solving the set partitioning problem, P, defined 

in Section 2. 

2.1.4 Heuristic Approaches to the Set Partitioning Problem 

In this section, as an alternative to the branch-and-price method, we propose two heuristic methods for 

solving problem P. The first heuristic method iteratively constructs a partition by forming subsets that 

will be included in the partition. The second method, on the other hand, starts with a set containing 

all of the items and forms the subsets from this that will be included in the partition. 

The first heuristic method, which we refer to as the Partitioning via Integration heuristic (PI-H), 

works as follows. In an intermediate iteration, suppose that we have an infeasible partition with a set 

of subsets such that some of the items are not included in the partition. We randomly select one item 

from the set of excluded items, denoted by E. Two options are considered for this item: (i) it can be 

integrated into one of the subsets of the current partition or (ii) it can be integrated into the current 

partition as a new subset by itself. We first consider option (i) and determine the subset into which 

the item will be integrated, so that the increase in the total cost due to integration is minimized. As a 

result of option (i), a new partition (with the same number of subsets) is formed and its total cost is 

known. Then, we consider option (ii), which forms a new partition that includes one additional subset 

different from those in the current partition and its total cost is equal to the cost of the current partition 

plus the cost of ordering the selected item individually. Finally, the option which results in a partition 

with lower total cost is chosen. Starting with the case when all of the items are excluded, this process 
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3 

is repeated until no excluded item remains, i.e., a feasible partition is formed and E = ∅. Appendix 5.7 

states PI-H, which runs in O(n2) time. 

The second heuristic method, which we refer to as the Partitioning via Exclusion heuristic (PE-H), 

works as follows. In an intermediate iteration, suppose that we have a set of subsets such that some of 

the items are not included within these subsets. Let E denote the set of items excluded. We execute 

BE-H with E, such that πi = 0 ∀i ∈ S (note that one needs the values of πi ∀i ∈ S to execute BE-H, 

and when πi = 0 ∀i ∈ S, BE-H seeks a consolidation with low costs instead of low reduced costs). 

This returns a subset from the set of excluded items (note that one may apply any heuristic to form a 

subset from a given set of items; however, we use BE-H instead of SE-H, as our numerical experiments 

indicate that BE-H outperforms SE-H in terms of solution quality). Then, the current set of subsets is 

expanded by including the subset generated by BE-H and the set of excluded items is reduced. Starting 

with the case when all of the items are excluded, this process is repeated until no excluded item remains, 

i.e., a feasible partition is formed and E = ∅. Appendix 5.8 states PE-H, which runs in O(n3) time. 

Findings and Applications 

In this section, we first focus on demonstrating the efficiency of the heuristic methods we have discussed 

for the pricing problem. Following this, we discuss our results for the branch-and-price and heuristic 

methods for solving the set partitioning problem. Then, we demonstrate how shipment consolidation 

leads to reduced truck density on the distribution network and provide sensitivity analysis on the benefits 

of shipment consolidation. 

3.1 Efficiency of the Pricing Heuristic Methods 

To analyze the efficiency of the pricing heuristic methods, we first compare SE-H and BE-H with total 

enumeration for small size problems. Then, we compare SE-H and BE-H with BARON for larger size 

problems. The heuristic methods are coded in MATLAB, and GAMS is utilized to solve the pricing 

problems via BARON. 

To compare the pricing heuristic methods with total enumeration, for each n = {5, 10, 15, 20}, 

we solve a randomly generated problem instance from each of 32 combinations of λ ∼ 

{U [1000, 1500], U [1500, 2000]}, a ∼ {U [250, 500], U [500, 750]}, h ∼ {U [2, 4], U [4, 6]}, P = {750, 1000}, 

and R = {500, 750}, where λ, a, and h denote n-vectors of λi, ai, and hi values, respectively. 

Furthermore, U [l, u] denotes a uniform distribution with lower bound l and upper bound u. We note 

that when solving a pricing problem within the branch-and-price method, we have the precise πi values. 

However, our aim here is to analyze the efficiency of the pricing heuristic methods for any given problem 
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parameters. Therefore, in determining the dual values required in the pricing problem, for each problem 

instance we let πi ∼ U [0, zi], where zi denotes the value of Equation (2) with ai, di, and hi. The 

rationale behind this selection of πi values is as follows. The dual problem of LRP, stated in Section 

2.1, specifies an upper bound on each dual variable (i.e., we have the constraints πi ≤ ui ∀i ∈ I in the 

dual of LRP) such that this upper bound is the minimum cost of replenishing this item independently 

of the others. Thus, we assume that π values are bounded by the zi values. Table 1 documents the 

average values, over all 32 problem instances solved for each n, for the reduced cost of the column found 

by total enumeration (opt. value), and the reduced costs of the best columns (best value) found by the 

pricing heuristic methods, along with the computational times for total enumeration and the pricing 

heuristics in seconds, and the optimality gap (gap) of the pricing heuristic methods. 

Table 1: Comparison of Total Enumeration and The Pricing Heuristic Methods 

Enumeration SE-H BE-H 
n Opt. Value Time Best Value Time Gap Best Value Time Gap 
5 657.66 0.001 675.33 0.000 2.69% 657.66 0.002 0.00% 
10 221.04 0.031 223.57 0.000 1.14% 221.04 0.001 0.00% 
15 65.63 1.720 76.53 0.001 16.60% 67.08 0.003 2.20% 
20 -57.32 2288.249 -47.86 0.002 16.50% -55.63 0.008 2.96% 
avg 221.75 572.500 231.89 0.001 9.23% 222.54 0.004 1.29% 

As is clear from Table 1, both pricing heuristic methods are far more efficient than total enumeration 

in computational time. Moreover, BE-H finds the optimal solution for all of the problem instances solved 

for n = 5 and n = 10, resulting in 0% optimality gap, and the optimality gap of BE-H is less than 3% 

for n = 15 and n = 20. While BE-H has a 1.29% optimality gap on average, SE-H, which is slightly 

faster than BE-H, has a 9.23% optimality gap on average. 

For larger size problem instances, we compare SE-H and BE-H with GAMS/BARON for n = 

{10, 15, 20, 25, 30, 35, 40, 45, 50}. For each n, we solve a randomly generated problem instance from 

each of 32 combinations of λ ∼ {U [1000, 1500], U [1500, 2000]}, a ∼ {U [250, 500], U [500, 750]}, h ∼ 

{U [2, 4], U [4, 6]}, P = {750, 1000}, and R = {500, 750}. The dual prices for any problem instance 

are generated as explained previously. The time limit used for BARON was 1000 seconds. Table 2 

summarizes the average values, over all 32 problem instances solved for each n, for the reduced costs 

of the best columns (best value) found by BARON and the pricing heuristic methods along with the 

computational times of each method. 

It can be observed from Table 2 that the pricing heuristic methods are computationally more efficient 

than BARON. In particular, BARON always terminated due to the time limit imposed in GAMS. While 

BARON has the best average result in terms of the solution quality, BE-H is within less than 2% of 
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Table 2: Comparison of BARON and The Pricing Heuristic Methods 

BARON SE-H BE-H 
n Best Value Time Best Value Time Best Value Time 
10 225.47 1004.309 230.07 0.000 225.47 0.006 
15 61.92 1003.044 63.64 0.001 61.92 0.004 
20 -47.06 1002.297 -43.46 0.001 -47.06 0.009 
25 -124.89 1000.616 -116.01 0.001 -124.89 0.015 
30 -183.06 1001.289 -173.19 0.002 -181.27 0.017 
35 -222.04 1002.160 -217.56 0.002 -217.89 0.019 
40 -245.55 1000.861 -238.38 0.002 -247.14 0.029 
45 -302.92 1001.368 -295.15 0.003 -295.15 0.032 
50 -450.64 1000.852 -444.96 0.002 -444.96 0.042 
avg -143.20 1001.866 -137.22 0.002 -141.22 0.019 

BARON on average. Furthermore, BE-H was able to find a lower average reduced cost for the case of 

n = 40. Both BARON and BE-H outperformed SE-H in solution quality and BE-H is very efficient 

computationally. Therefore, in our analysis of the branch-and-price method, we use BE-H as a heuristic 

column generator. 

3.2 Efficiency of the Set Partitioning Heuristic Methods 

To analyze the efficiency of the heuristic set partitioning methods, we first compare PI-H and PE-H 

with CPLEX for small size problems. In particular, for small size problems, all of the possible subsets 

of the items and their costs can be generated; thus, the set partitioning problem P corresponds to a 

pure integer programming problem, which can be solved via CPLEX. On the other hand, for larger 

problem sizes, the data generation time is very long; hence, we compare PI-H and PE-H with the 

branch-and-price method (B&P). 

To compare the set partitioning heuristic methods with GAMS/CPLEX, for each n = 

{5, 10, 15, 20}, we solve a randomly generated problem instance from each of 32 combinations of λ ∼ 

{U [1000, 1500], U [1500, 2000]}, a ∼ {U [250, 500], U [500, 750]}, h ∼ {U [2, 4], U [4, 6]}, P = {750, 1000}, 

and R = {500, 750}. The time limit for CPLEX was set to 1000 seconds and the relative gap was defined 

to be 0.001 in GAMS (the default relative gap is 0.1; however, in this case, the heuristic methods were 

much more effective than CPLEX in terms of solution quality and solution time as CPLEX terminated 

after analyzing a limited number of integer solutions due to the relative gap). Table 3 documents the 

average values, over all 32 problem instances solved for each n, for the total cost of the best partition (best 

value) found by CPLEX and the set partitioning heuristic methods, along with the data generation time 

(DGT) required for CPLEX, and the computational times of CPLEX and the set partitioning heuristic 

methods in seconds. 
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Table 3: Comparison of CPLEX and The Set Partitioning Heuristic Methods 

CPLEX PI-H PE-H 
n Best Value DGT Time Best Value Time Best Value Time 
5 17482.99 0.002 0.206 17512.60 0.000 17498.40 0.002 
10 35015.21 0.031 0.248 35116.81 0.002 35095.24 0.003 
15 52326.27 1.611 3.729 52475.54 0.003 52449.88 0.003 
20 69440.42 2140.210 660.248 69482.39 0.003 69473.39 0.006 
avg 43566.23 535.463 166.108 43646.83 0.002 43629.23 0.004 

It follows from Table 3 that both of the set partitioning heuristic methods outperform CPLEX in 

computational time. Specifically, as n increases, the relative time efficiency of the heuristic methods 

drastically increases. Furthermore, the data generation time increases exponentially (it takes more than 

a day to generate data for CPLEX when n = 25). While CPLEX is slightly better than the heuristic 

methods in terms of solution quality, both heuristic methods were able to find solutions that were within 

less than 1% of CPLEX; hence, the heuristic methods are quite efficient. When PI-H and PE-H are 

compared, it is observed that PE-H is slightly better in terms of solution quality. 

For larger problem sizes, we compare the set partitioning heuristic methods with B&P. The 

implementation details of B&P are explained in Appendix 5.9. In particular, since a heuristic 

method (BE-H) is used for solving the pricing problems, B&P is also a heuristic method. For 

each n = {10, 15, 20, 25, 30, 35, 40, 45, 50}, we randomly generate a problem instance for each of 

the 32 combinations of λ ∼ {U [1000, 1500], U [1500, 2000]}, a ∼ {U [250, 500], U [500, 750]}, h ∼ 

{U [2, 4], U [4, 6]}, P = {750, 1000}, and R = {500, 750}. Table 4 summarizes the average values, over 

all 32 problem instances solved for each n, for the total cost of the best partition (best value) found 

by B&P and the set partitioning heuristic methods, and the computational times of B&P and the set 

partitioning heuristic methods in seconds. Furthermore, the average number of nodes analyzed (# of 

nodes), average number of columns generated in nodes (avg # of columns), and average solution time 

required for nodes (avg node time) are documented for the branch-and-price method. 

It follows from Table 4 that both of the set partitioning heuristics outperform B&P in computational 

time. We also observe that B&P is able to find better solutions. However, the average improvement 

due to B&P over both of the heuristic set partitioning methods is less than 2.6% for each n value and 

the average improvement due to B&P is around 1.3%. Furthermore, the improvement in the objective 

function due to B&P decreases as the problem size increases. It is worth noting that the number of 

nodes analyzed, average number of columns generated in solving the LRP at the nodes, the average 

solution time of a node, and the total time required for B&P increase as the number of items increases. 

We can conclude that the set partitioning heuristics are very efficient, as they outperform B&P with 
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Table 4: Comparison of The Branch-and-Price and The Set Partitioning Heuristic Methods 

Branch-and-Price PI-H PE-H 
# of Avg # of Avg Node Best Best Best 

n Nodes Columns Time Value Time Value Time Value Time 
10 97.06 13.10 0.151 34018.73 10.709 34920.14 0.002 34894.19 0.004 
15 166.23 19.19 0.293 51171.89 36.524 52454.03 0.006 52438.21 0.004 
20 227.06 26.67 0.531 68577.53 74.801 69823.75 0.006 69799.89 0.007 
25 273.21 26.35 0.671 85768.02 114.597 87493.52 0.007 87475.12 0.007 
30 583.78 35.78 1.338 102976.45 457.269 104631.05 0.010 104609.11 0.009 
35 606.21 40.34 2.055 120547.65 671.874 121974.94 0.009 121953.78 0.013 
40 611.44 47.38 3.034 138530.71 1401.903 139820.07 0.011 139798.43 0.017 
45 672.39 46.23 3.322 155640.78 1653.121 157310.93 0.010 157306.02 0.023 
50 969.44 49.38 3.489 173078.32 2361.469 174303.78 0.011 174299.94 0.025 
avg 467.42 33.82 1.654 103367.79 753.585 104748.02 0.008 104730.52 0.012 

respect to computational time, and their solution qualities are very close to B&P. When PI-H and 

PE-H are compared, it is observed that PE-H is slightly better in terms of solution quality. Therefore, 

in the following analyses, we use PE-H as our solution method for the multi-item EOQ model with 

shipment consolidation and explicit truckload transportation costs. 

3.3 Cost and Environmental Benefits of Shipment Consolidation 

This section discusses how the shipment consolidation approach we have introduced in this paper reduces 

the total costs per unit time as well as the number of trucks used for shipments compared to the scenario 

when the items are independently shipped, which we refer to as independent shipment. Furthermore, 

we quantify the decrease in truck density on the transportation network and increase in truck capacity 

utilization due to shipment consolidation. We document how the changes in (i) the number of items, 

(ii) demand levels, (iii) fixed order costs, (iv) holding costs per unit volume per unit time, (v) per truck 

capacity, and (vi) per truck cost affect the total shipment costs per unit time (total cost), total number 

of truck trips for a single shipment of each item (truck number), total truckload transportation cost 

per unit time (truck cost), truck utilization, and the number of trucks used for shipment per unit time 

(truck density). All of the associated tables are given in Appendix 5.10. 

To analyze the effects of any of the aforementioned parameters, we consider different 

combinations of n = {150, 75, 100}, λ ∼ {U [1000, 1500], U [1500, 2000], U [2000, 2500]}, a ∼ 

{U [250, 500], U [500, 750], U [750, 1000]}, h ∼ {U [2, 4], U [4, 6], U [6, 8]}, P = {750, 1000, 1250}, and R = 

{500, 750, 1000}, changing the parameter of interest as indicated in Tables 5-10. Ten randomly generated 

problem instances are solved for each of 243 combinations for each specific value of the parameter (i.e., 

2340 problem instances are solved for each specific value of the parameter of interest). 
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(i) Effects of n: Table 5 summarizes the results for each n value. We have the following 

observations based on Table 5. 

• As n increases, as expected, total cost, number of trucks, truck cost, and truck density increase 

under any shipment policy. It is observed that truck utilization follows a stable pattern for both 

independent shipment and shipment consolidation cases. 

• The percent increase in truck utilization and percent decrease in truck density due to shipment 

consolidation follow a stable pattern as n increases. On the other hand, the percent reduction in 

total cost, number of trucks, and truck cost due to shipment consolidation slightly increase as n 

increases. 

The observations stated above suggest that the cost savings due to shipment consolidation increase as 

the number of items considered increases, while improvements in truck utilization and truck density due 

to shipment consolidation remain the same. 

(i) Effects of λ: Table 6 summarizes the results for each λ value. We have the following 

observations based on Table 6. 

• As λ increases, as expected, total cost, number of trucks, truck cost, and truck density increase 

under any shipment policy. While the truck utilization under independent shipment increases with 

λ, truck utilization under shipment consolidation follows a stable pattern. 

• The percent reduction in total cost, number of trucks, truck cost, truck density and the percent 

increase in truck utilization due to shipment consolidation diminish as λ increases. 

The observations stated above suggest that the benefits of shipment consolidation are greater when the 

items have lower demand rates. This is expected as full truck loads are justifiable when the demand rate 

is high for an item, hence, independent shipment results in more full truck loads for higher demand rates 

than it would for lower demand rates. Nevertheless, shipment consolidation is observed to be superior 

to independent shipment in all demand cases. 

(i) Effects of h: Table 7 summarizes the results for each h value. We have the following 

observations based on Table 7. 

• As h increases, total cost increases under any shipment policy as expected. Under independent 

shipments, while the total number of trucks decreases, truck cost and truck density increase with h. 

Furthermore, truck utilization decreases. These imply that, under independent shipments, higher 

holding costs result in smaller but more frequent shipments by under-utilized trucks compared to 

the case of lower holding costs. 
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• Under shipment consolidation, similar to independent shipments, the total number of trucks 

decreases with h; however, truck cost, truck utilization, and truck density follow a stable pattern. 

• The percent reduction in total cost, number of trucks, truck cost, truck density and the percent 

increase in truck utilization due to shipment consolidation increase as h increases. 

The observations stated above suggest that the benefits of shipment consolidation are greater when 

the items are subject to high holding costs. Furthermore, while truck utilization, truck density, and 

truck costs under shipment consolidation are not affected by changes in holding costs, these values are 

negatively affected under independent shipments as holding costs increase. 

(i) Effects of a: Table 8 summarizes the results for each a value. We have the following 

observations based on Table 8. 

• As a increases, total cost and the total number of trucks increase under any shipment policy. This 

is expected as higher fixed order costs result in larger orders, hence, more trucks are used for 

shipments. Under independent shipments, while the total number of trucks increases, truck cost 

and truck density decrease with a. Furthermore, truck utilization increases. These imply that, 

under independent shipments, higher fixed order costs result in larger but less frequent shipments 

by better utilized trucks compared to the case of lower fixed order costs. 

• Under shipment consolidation, similar to independent shipments, the total number of trucks 

increases with a; however, truck cost and truck density follow a stable pattern and truck utilization 

decreases very slightly. 

• The percent reduction in total cost, number of trucks, truck cost, truck density and the percent 

increase in truck utilization due to shipment consolidation decrease as a increases. 

The observations stated above suggest that the benefits of shipment consolidation are greater when the 

items are subject to low fixed order costs. Furthermore, while truck utilization, truck density, and truck 

costs under shipment consolidation are not affected by changes in fixed order costs, these values are 

negatively affected under independent shipments as fixed order costs decrease. 

(i) Effects of P : Table 9 summarizes the results for each P value. We have the following 

observations based on Table 9. 

• As P increases, as expected, total cost, total number of trucks, truck cost, and truck density 

decrease under any shipment policy. Nevertheless, the rate of decrease in these values is higher 

under shipment consolidation. Truck utilization under independent shipments decreases as P 

increases whereas it follows a stable pattern under shipment consolidation. 
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• The percent reduction in total cost, number of trucks, truck cost, truck density and the percent 

increase in truck utilization due to shipment consolidation increase as P increases. 

The observations stated above suggest that the benefits of shipment consolidation are greater when 

trucks used for shipments have high capacities. 

(i) Effects of R: Table 10 summarizes the results for each R value. We have the following 

observations based on Table 10. 

• As R increases, as expected, total cost and truck cost increase under any shipment policy. Under 

independent shipments, while the total number of trucks follows a stable pattern, truck utilization 

increases, hence, truck density decreases as R increases. 

• Similar to independent shipments, the total number of trucks under shipment consolidation follows 

a stable pattern as R increases. While truck utilization slightly increases, truck density follows a 

stable pattern under shipment consolidation. 

• The percent reduction in total cost, truck cost, truck density and the percent increase in truck 

utilization due to shipment consolidation decrease as R increases. On the other hand, the reduction 

in the total number of trucks due to shipment consolidation is stable for different R values. 

The observations stated above suggest that the benefits of shipment consolidation are greater when the 

trucks used for shipments have lower costs. 

Conclusions, Recommendations, and Suggested Research 

This study analyzed shipment consolidation policies with explicit truckload transportation costs in a 

multi-item inventory system. To the best of our knowledge, shipment consolidation problems with 

explicit truckload transportation costs in multi-item inventory systems have not been analyzed in the 

literature. To analyze this problem, we formulated a set partitioning problem and proposed a branch-

and-price method for solving the set partitioning problem. The pricing problem associated with the 

branch-and-price method was shown to be NP-hard. Therefore, we provided two heuristic methods 

to solve the pricing problem. For a practical special case of the pricing problem, we showed that 

the pricing problem can be solved to optimality in polynomial time. This special case extends the 

EOQ model with market choice flexibility defined and analyzed in Geunes et al. (2004) by modeling 

explicit truckload transportation costs. Furthermore, as alternatives to the branch-and-price method, 

two heuristic methods are discussed for the set partitioning problem of interest in this study. 
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An extensive set of numerical studies was documented to analyze the efficiency of the heuristic 

methods proposed for the pricing subproblem and the set partitioning problem. The first set of numerical 

studies indicated that the pricing heuristic methods are quite efficient compared to BARON. The second 

set of numerical studies demonstrated the efficiency of the set partitioning heuristic methods. The last 

set of numerical studies focused on sensitivity analyses of each problem parameter with respect to 

the benefits of shipment consolidation. We concluded that in case of lower demand, higher holding 

costs, lower fixed order costs, higher per truck capacity, or lower per truck costs scenarios, the benefits 

of shipment consolidation are more substantial. Particularly, in such scenarios, the decrease in truck 

density, total costs, and transportation costs, and the increase in truck utilization due to shipment 

consolidation are greater. 

The consolidation policy analyzed in this study leads to a decreased number of trucks used to 

ship same total amount of commodities, i.e., reduced truck density and increased truck capacity 

utilization. Considering the need for low CO2 emissions in transportation, this study ideally is able 

to propose policies for greener transportation in supply chains. Furthermore, these policies lead 

to less truck congestion on the distribution network. Future research directions include analyzing 

shipment consolidation policies for multi-item inventory systems with stochastic demands. Furthermore, 

introducing different truck types, with distinct per truck costs and per truck capacities, remain as a 

future research direction. Another future research direction would explicitly account for truck routes in 

forming consolidated sets of items. 
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5 Appendix 

5.1 Summary of the Notation Used 

i : index for items, i = 1, 2, . . . , n, 
S : set of items, |S| = n, 
j : index for the subsets of S, j = 1, 2, . . . , 2n − 1, 
Sj : jth subset of S, 
ci : per unit volume procurement cost of item i, 
hi : per unit volume per unit time holding cost of item i, 
ai : fixed order cost of item i, 
λi: demand rate in volumes for item i, 
P : per truck capacity, 
R : per truck cost, 
ti : replenishment cycle length of item i, 
vi : replenishment volume of item i, 

fi(vi) : total cost per unit time excluding shipment costs for item i, 
vi
eoq: minimizer of fi(vi), 

gi(vi) : total cost per unit time including shipment costs for item i, 
(i)v : any minimizer of gi(vi), 
Tj : common replenishment cycle length for items in Sj , ∑ 
Vj : total replenishment volume of the items in Sj , Vj = Tj λi,i∈Sj 

Gj (Vj ) : total cost per unit time for items in Sj including shipment costs, 
Vj 

∗ : any minimizer of Gj (Vj ), 
xij : 1 if i ∈ Sj , 0 otherwise, 
yj : 1 if Sj is in the partition, 0 otherwise. 

5.2 Proof of Property 2 

We first relax the integrality of   in PP2, i.e., consider the following relaxation of PP2. ∑ 
V hiλixi ∑ ∑ ∑ ∑

i∈S 1 R  
min − πixi + ∑ + aixi λixi + λixi

V V 
i∈S 2 λixi i∈S i∈S i∈S 

i∈S 
s.t. (  − 1)P < V ≤  P, 

xi ∈ {0, 1}, i ∈ S. 

For any given x and V ,  = V/P in the solution of above relaxed problem; hence, it reduces to R-PP2. 

Let (x0, V 0) be a solution of R-PP2 and let  0 = ⌊V 0/P ⌋. Note that (x0, V 0 ,  0) also solves ∑ 
V hiλixi ∑ ∑ ∑ ∑

i∈S 1 R  
min − πixi + ∑ + aixi λixi + λixi

V V2i∈S λixi i∈S i∈S i∈S 
i∈S 

s.t. (  − 1)P < V ≤  P, 
  ≤  0 + 1, 
xi ∈ {0, 1}, i ∈ S. 

This then implies that  ∗ ≤  0 + 1. Similarly, (x0, V 0 ,  0) also solves 
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∑ 
V hiλixi ∑ ∑ ∑ ∑

i∈S 1 R  
min − πixi + ∑ + aixi λixi + λixi

V V 
i∈S 2 λixi i∈S i∈S i∈S 

i∈S 
s.t. (  − 1)P < V ≤  P, 

  ≥  0 , 
xi ∈ {0, 1}, i ∈ S. 

This then implies that  ∗ ≥  0 . Therefore, we have  0 ≤  ∗ ≤  0 + 1. � 

5.3 Proof of Property 3 

First consider the case when k =  0 + 1. Let (x 
0+1, V  

0+1) be a solution of PP2- 0 + 1 

Ṽ  
0+1such that = lim V . In this case, the objective function value of PP2- 0 + 1 excluding 

V ↓ 0P 

truckload transportation costs at (x 
0+1, V  

0+1) is approximately equal to the objective function ∑R 0 
value of PP2- 0 excluding truckload transportation costs at (x 

0+1, V  
0+1). Since, λixi ≤ 0P i∈S ∑R( 0+1) λixi, then the objective function value of PP2- 0 at (x 
0+1, V  

0+1) is smaller than lim V i∈S
V ↓ 0P 

the objective function value of PP2- 0 +1 at (x 
0+1, V  

0+1). Therefore, (x 
0+1, V  

0+1) cannot solve 

V  
0+1  0 

PP2 unless ˜ ̸ lim V . Now consider the case when k =  0 . Let (x , V  
0 
) be a solution of = 

V ↓ 0P 

Ṽ  
0 

PP2- 0 such that = lim V . Similarly, it can be argued that the objective function value 
V ↓( 0−1)P 

 0  0 
of PP2- 0 − 1 at (x , V  

0 
) is smaller than the objective function value of PP2- 0 at (x , V  

0 
). 

 0 
V  

0 
Therefore, (x , V  

0 
) cannot solve PP2 unless ˜ ̸ lim V . �= 

V ↓( 0−1)P 

5.4 Proof of Property 4 

The proof of Property 4 follows from the following observations. 

1. ci(V ) = ((Rk+a)/V −πi/λi)λi is decreasing in V , hence, ci(V ) values are minimized when V = kP . 

This then implies that the maximum number of items consolidated will be achieved when V = kP . 

2. Let products be sorted in nondecreasing order of ci(kP ) values. The order of the items based on ( ]
ci(V ) values, V ∈ (k − 1)P, kP , will be the same as V changes. That is, the order of items is ( ]
the same for any V ∈ (k − 1)P, kP . ( ]

3. It is clear that for any given V ∈ (k − 1)P, kP , the corresponding x that minimizes the objective 

function value of PP2-kSC for the given V is achieved by assigning xi = 1 when ci(V ) = ((Rk + 

a)/V − πi/λi)λi < 0 and xi = 0 otherwise. When ci(V ) > 0 ∀i ∈ S, then xj = 1 such that 

j =argmin{ci(V ) : i ∈ S} and xi = 0 ∀i ∈ S\{j}. 
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4. It follows from Observations 1–3 that when items 1, 2, . . . , ℓ are consolidated and V = kP , products 

1, 2, . . . ,m, with m ≤ ℓ can be consolidated for V ≤ kP . √ ∑ 
k5. Property 3 implies that V k will be equal to either kP or 2(a + kR) λix /h.i∈S i 

Then the correctness of Algorithm 1 follows from Observations 4–5. � 

5.5 Pseudo-code for SE-H 

Algorithm 2 Sorting-based-exclusion heuristic method (SE-H) for the general pricing problem: 

0: Define z(x) as the optimum objective function value of PP2 given x. 

∗1: Let x be defined such that xi = 1, ∀i ∈ S. Define z = M , where M is a large positive number. 

2: For k = n : 1 : −1 

3: Calculate z(x) and the associated T 

∗ ∗4: If z(x) < z ∗ , set z = z(x) and x = x. 

5: i∗ = 0 and w = −M 

6: For i = 1 : n 

hiλiT ai7: If xi = 1, set wi + + R  = −πi + 2 T kT 

8: If wi > w, set w = wi and i∗ = i 

9: End 

10: xi∗ = 0 

11: End 

∗12: Return x . 

5.6 Pseudo-code for BE-H 

Algorithm 3 Best-exclusion heuristic method (BE-H) for the general pricing problem: 

0: Define z(x) as the optimum objective function value of PP2 given x. 

∗∗1: Let x be defined such that xi = 1, ∀i ∈ S. Define z = M , where M is a large positive number. 

2: For k = n : 1 : −1 

3: Calculate z(x) 

∗∗ ∗4: If z(x) < z ∗∗ , set z = z(x) and x = x. 

∗5: Set z = M and j∗ = 0 

6: For i = 1 : n 

7: If xi = 1, set xi = 0 and calculate z(x) 

8: If z(x) < z ∗ , set i∗ = i 
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9: End 

10: xi∗ = 0 

11: End 

∗12: Return x . 

5.7 Pseudo-code for PI-H 

Recall that each subset can be represented by a binary n-vector and each item is itself a subset, i.e., 

item i is also represented by a binary n-vector such that its ith entry is 1 and all other entries are 0. We 

use ei to denote the binary n-vector defining item i. A partition can be represented by a set of binary 

n-vectors and we use xj to denote the jth component included in the partition. 

Algorithm 4 Partitioning via Integration heuristic method (PI-H) for problem P: 

1 20: Set E = {e , e , . . . , en} and P artition = ∅. 

1: Randomly select ei from E and set E =: E\{ei}. 
∗2: Set g = M and j∗ = 0. 

3: For j = 1 : |P artition| 
j i4: x = x + e and calculate G(x) 

∗5: If G(x) − G(xj ) < g ∗ , g = G(x) − G(xj ) and j∗ = j. 

6: End 

∗ j∗ j∗ 
7: If g ≤ G(ek), update P artition by setting x =: x + ei 

8: Else P artition =: P artition ∪ {ei} 

9: If E = ∅, stop and return P artition; else, go to Step 1. 

5.8 Pseudo-code for PE-H 

Algorithm 5 Partitioning via Best-exclusion heuristic method (PE-H) for problem P: 

0: Let πi = 0 ∀i ∈ S. Set E = {e1 , e2 , . . . , en} and P artition = ∅. 

1: Execute BE-H with E and let x be the output. P artition =: P artition ∪ {x}. 

2: For i = 1 : n 

3: If xi = 1, E =: E\{ei} 

4: End 

5: If E = ∅, stop and return P artition; else, go to Step 1. 
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5.9 Implementation Details of the Branch-and-Price Method 

Here, we explain the implementation details of the branch-and-price method discussed in Section 2.1. 

CPLEX via GAMS is used in solution of any linear programming problems. 

Branching rule: We branch on the binary decision variables, that is, yj values. In particular, 

consider a feasible non-integer solution of a node. We choose the variable which is the closest to 0 or 

1 to branch on. We define the first child by including the additional yj = 1 constraint and the second 

child by including yj = 0 constraint. 

Node priority: We use a depth-first approach and solve the first child of a parent node. If the 

parent node is fathomed due to integrality, infeasibility, or bounded by the best integer solution, we 

move to its sibling. The reason behind applying a depth-first approach with priority given to the first 

child is due to the fact that as the branch-and-bound tree gets deeper, the LRP of the node can be 

reduced to a smaller LRP that we explain next. 

Solving a node: Suppose that we need to solve a node. Each node is defined by problem LRP 

and the additional yj = 1 ∀j ∈ J1 and yj = 0 ∀j ∈ J0 type of constraints, where J1 and J0 define the 

sets of the subsets to be included and excluded, respectively, from the LRP solution of the node under 

consideration. First, we check whether the node is infeasible due to yj = 1 type of constraints. If there ∑ 
exists at least one i such that j∈J1 xij yj > 1, then the node is stated as infeasible since it violates the 

assignment constraints, and, therefore, it is fathomed. Otherwise, we reduce the LRP to a smaller LP, 

which we refer to as the reduced LRP. This reduction is executed as in the following simple example. 

Suppose we have five items S = {1, 2, 3, 4, 5}. The current node has to include S1 = {1} and 

S2 = {2}, that is, columns [1, 0, 0, 0, 0]t and [0, 1, 0, 0, 0]t has to be included, i.e., y1 = 1 and y2 = 1. 

Furthermore, let us assume that the current node has to exclude S3 = {1, 2, 3} and S4 = {4, 5}, that is, 

columns [1, 1, 1, 0, 0]t and [0, 0, 0, 1, 1]t has to be excluded, i.e., y3 = 0 and y4 = 0. Since S1 ∪ S2 = ∅, 

we cannot tell that the node is infeasible at this point. Now since items 1 and 2 are already covered, we 

eliminate them and we have S0 = {3, 4, 5}. That is, we now have a smaller set of items that we need to 

solve the LRP for. Note that the reduced LRP will have no yj = 1 type of constraints. Now suppose 

that we solve the reduced LRP with no yj = 1 and no yj = 0 type of constraints. It may be the case that 

S4 = {4, 5} and S5 = {3} define the solution of the reduced LRP. Together with the initially included 

subsets, this implies that S1, S2, S4, S5 define the solution of the original node. However, this solution 

is not feasible to the original node as we should have y4 = 0. Here, we need to define yj = 0 type of 

constraints for the reduced LRP. In particular, if Sj is to be excluded from the original LRP, it will also 

be excluded from the reduced LRP when it does not have any of the items that we will eliminate from 
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the original set of items. For the example above, the reduced LRP will only consider items 3,4 and 5, 

and it has to exclude S4. 

After forming the reduced LRP, we apply column generation to solve it. To initiate the column 

generation for solving the reduced LRP of the node, a feasible starting solution and a modified column 

generator, which will not generate columns that has to be excluded from the solution of the reduced 

LRP, are needed. 

Generating a feasible starting solution: We first see whether the column including all of the 

items, which is a feasible solution by itself, can be used as a starting solution. If the reduced LRP does 

not require the full column to be excluded, we choose it as the feasible starting solution. Else, we use 

a modified version BE-H to generate a starting feasible solution. We start with the full column as if 

it can be included, generate dual variables, then apply BE-H to generate a new column. We modify 

BE-H such that it never generates a column that should be excluded from the reduced LRP by assigning 

high reduced costs to the columns that has to be excluded from the reduced LRP. If the new column 

constitutes a feasible solution by itself, we take it as our starting solution. Else, it is included in the set 

of columns that should not be generated and we apply BE-H to generate one more new column. Then 

we check whether the newly generated columns constitute a feasible solution. This process is repeated 

until a feasible solution is constituted or BE-H generates a column that has already been generated. 

In the former case, a feasible starting solution is known, while we use the later case to fathom the node 

due to infeasibility. 

Fathoming: A node is fathomed if its solution is integer, or the objective function value is greater 

than the best integer solution, or it is stated to be infeasible due to either yj = 1 type of constraints or 

a feasible starting solution cannot be generated for the reduced LRP due to yj = 0 type of constraints. 

5.10 Tables 

The tables used for the discussion of the cost and environmental benefits of shipment consolidation 

compared to independent ordering are stated below. 
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